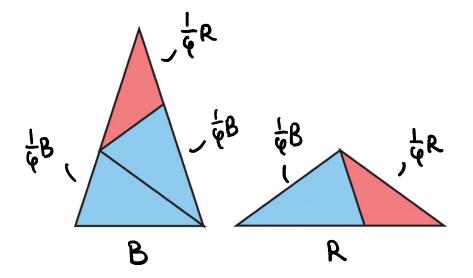
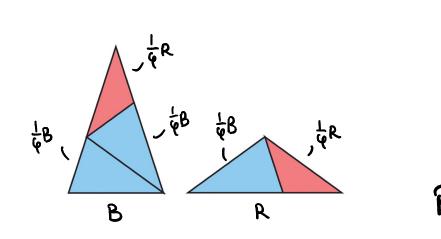


Standard Substitution Tiling Construction A fixed single scale λ (prototiles may vary in volume)

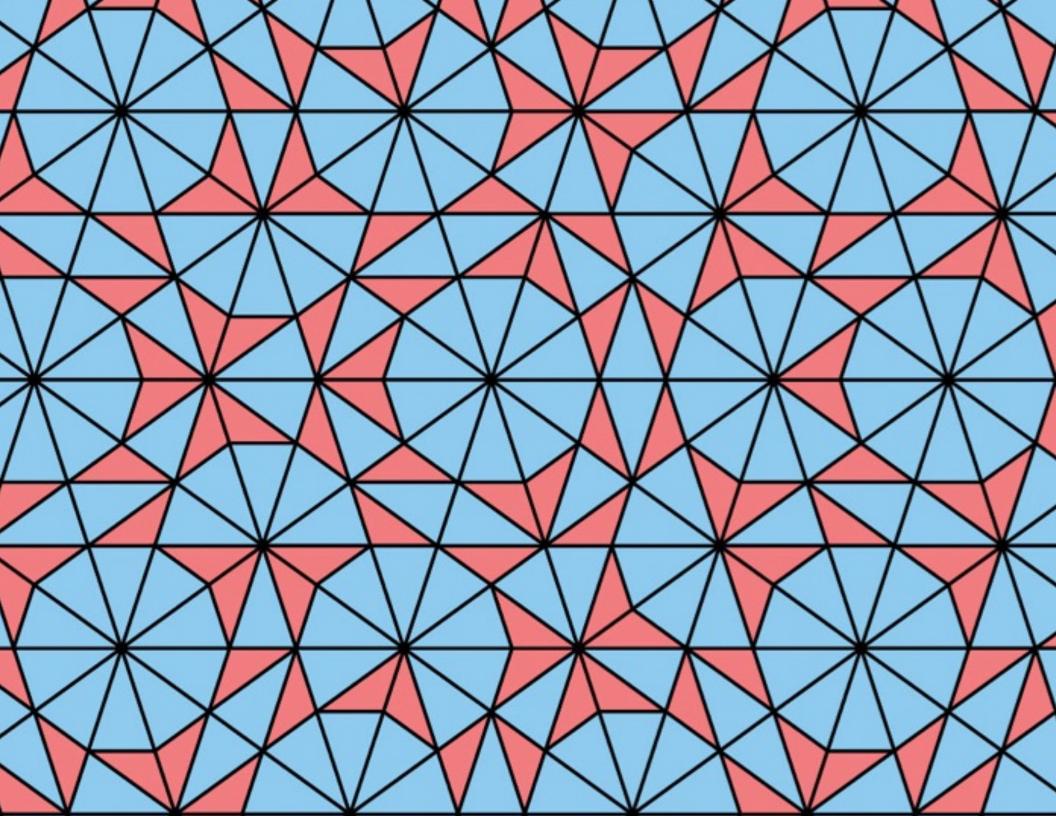


substitute according rescale uniformly to substitution rule by 1/2 Every iteration defines a larger patch of tiles

Standard Substitution Tiling Construction Taking appropriate limits defines substitution tilings of Rd · Induce Delone sets (rel. dense and nnif. discrete) · Have a finite # of tiles up to translations (sometimes FLC) Substitution matrix SeM_n(Z) (irreducible, sometimes primitive) Sij = #{copies of Tj in Po(Ti)} · Perron-Frobenius theory



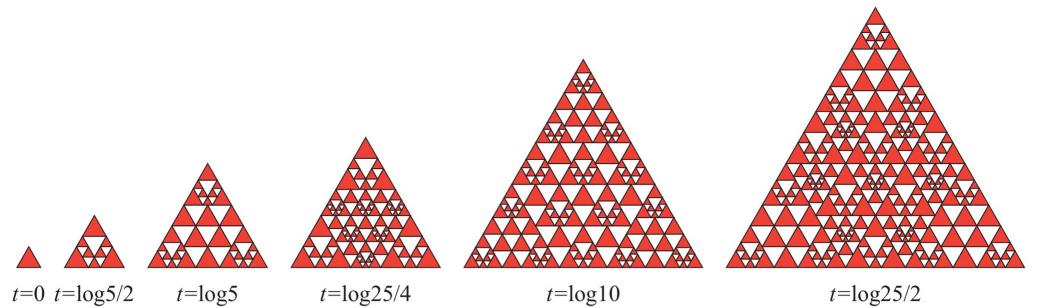
The substitution matrix is $S = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ Perron - Frobenius eigenvalue φ^2



Substitution Flow

Position $T_i \in T_o$ so that the origin is in the interior of T_i . Define the substitution flow $F_t(T_i)$ for $t \neq 0$ (time)

- At time t=0 F_o(T_i) T_i (a patch consisting of 1 tile)
- As t increases, inflate the patch by e^t and substitute tiles of volume > 1 via por (substitution rule)



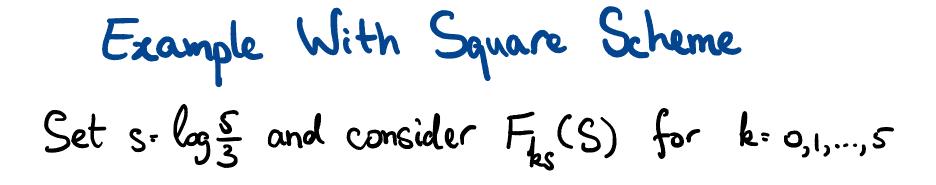
Tilings As Limits

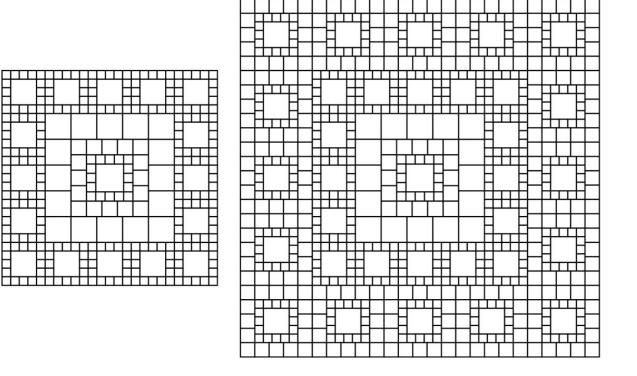
Multiscale substitution tilings are tilings of R^d that are limits of translations of patches $\{F_t(T_i): t > 0, T_i \in T_0\}$, with respect to the Chabauty-Fell topology on the space of closed subsets of R^d, induced by the metric $D(A_{1},A_{2}) = \inf \left\{ \left\{ c > 0 : \begin{array}{c} A_{1} \cap B(0, \frac{1}{2}) \subset A_{2}^{+r} \\ A_{2} \cap B(0, \frac{1}{2}) \subset A_{1}^{+r} \\ \end{array} \right\} \cup \{1\} \right\}$ "Sets are close if restricting to a large centered ball, each is contained in a small neighborhood of the other" The tiling space Xo consists of all tilings generated by 6.

			I
	Ħ		
	E	┿╏┷╏┿╏┷╏┿╏┷╏┿┨┷╏┿	
			E
	日		
	Ħ		
F			
	Þ		
			Ħ
	Ħ		
	Ħ		
	挕		
╧┨┅┠┾┠┅┠┾┠┅	Ħ		╏┅┠┼┠┅
	目		
			Ī
	ŀ		Π
	Ħ		Γ
			Ш Ш

Stationary Tilings

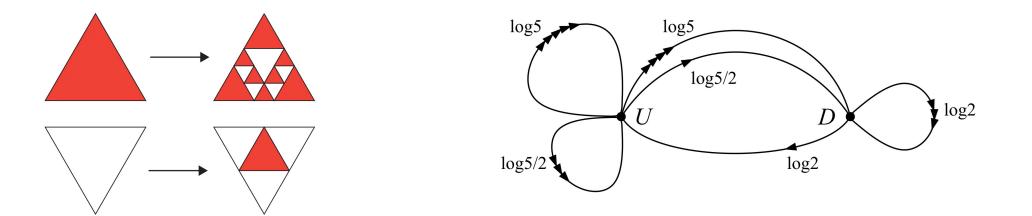
Choose self and an initial position of
$$T_i$$
 so that the patch $F_s(T_i)$ contains T_i as a tile in the same position (under the assumptions we will introduce this is possible).
Then for all kell, $F_{iks}(T_i)$ contains $F_{ik-ils}(T_i)$, so $S = \bigcup_{k=0}^{\infty} F_{ks}(T_i) \in X_{or}$ is a stationary tiling, satisfying $F_s(S) = S$.



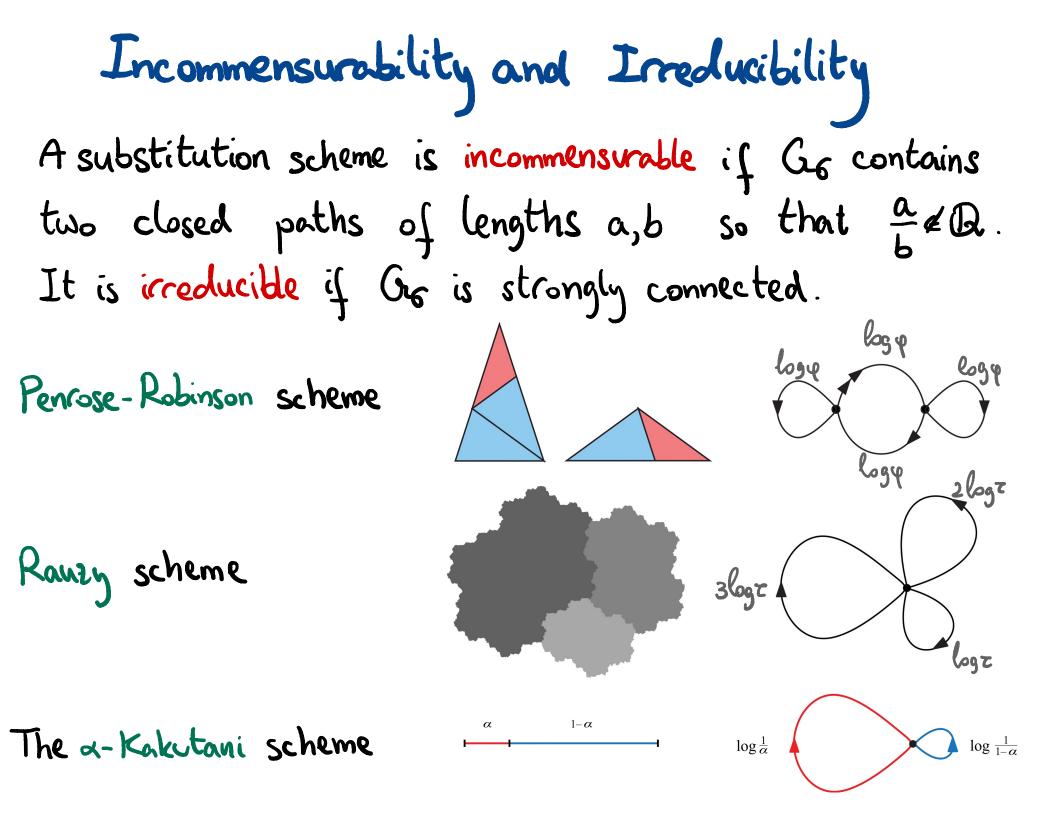


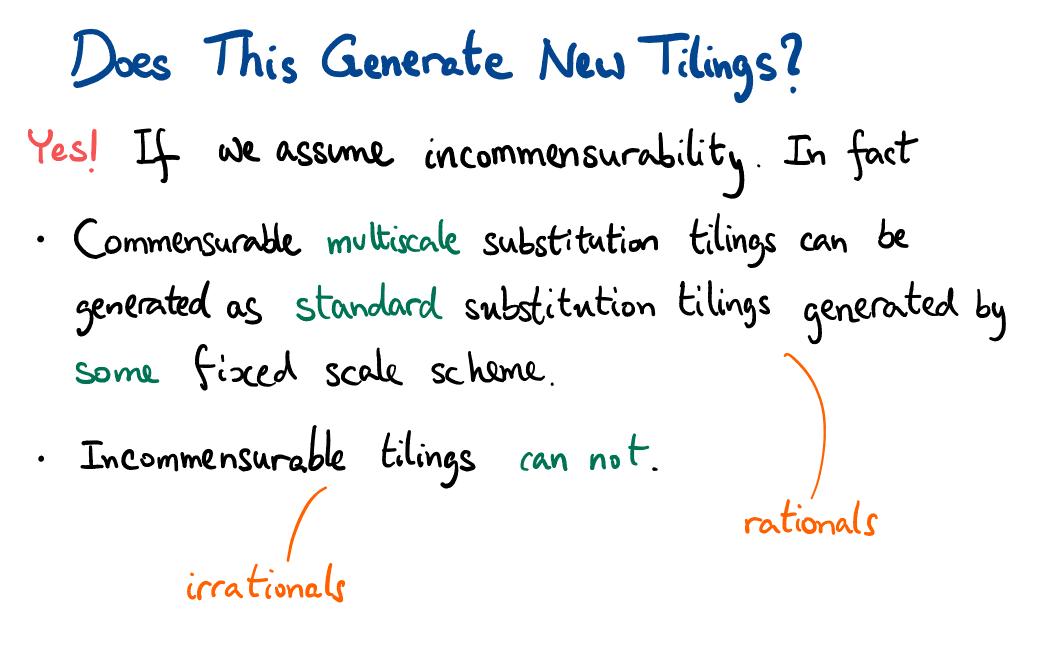
Graph Model For Substitution Schemes

A directed weighted graph Gs is associated with o

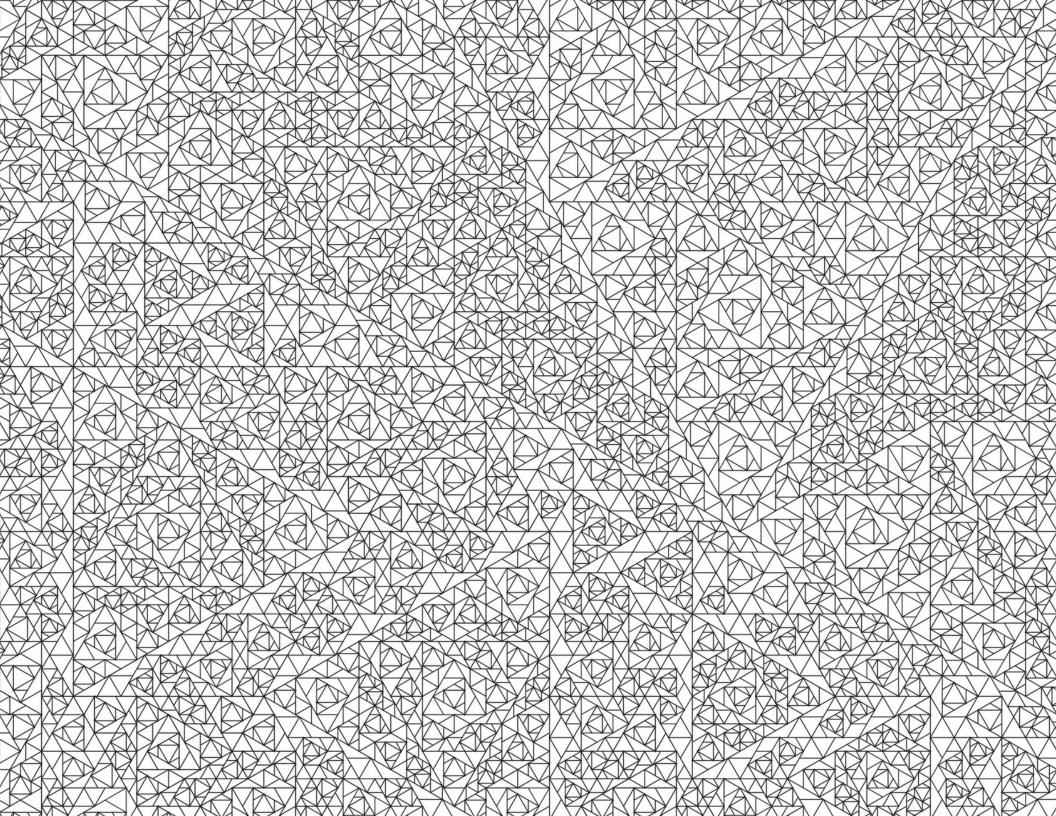


Vertices model the prototiles in \overline{c}_{0} . Edges originating at a vertex model the tiles appearing in the substitution rule of the corresponding prototile. Lengths determined by the scales of the tiles $(log \frac{1}{2})$





From nou on all schemes are irreducible and incommensurable.

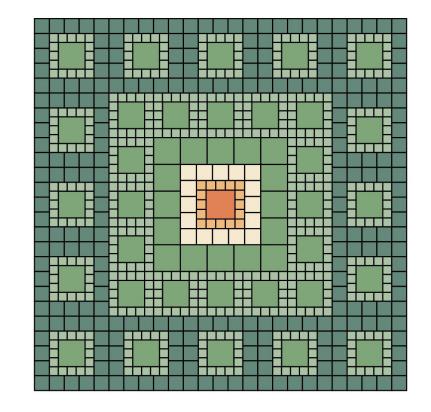


Tile Shape and Denseness of Scales

- For every tiling in X_6 , all tiles are similar to rescaled copies of the prototiles in τ_6 .
- Tiles appear in a dense set of scales within certain intervals of possible scales bounded away from 0.
 It follows that tilings induce Delone sets.
- The same holds for any legal patch a subpatch of F_t(T_i)
 for some t=> and T_i=z_e.

Scale Complexity Theorem. For stationary $S = \bigcup_{k=0}^{\infty} F_{ks}(T)$ the complexity function $c_{s}(k)$ counts the number of distinct scales in which tiles appear in $F_{ks}(T_{i})$. If $c_{s}(l) = c_{s}(l+1)$ for some len then $c_{s}(k) = c_{s}(l)$ for all $k \ge l$, and such l exists if and only if σ is commensurable.

A Sturmian tiling, in which $c_s(k+1) = c_s(k) + 1$ for all $k \ge 0$



Explicit Counting Formulas Consider the following matrices in $M_n(R)$ associated with σ . Here Σ^{*} denotes summation over all tiles T of type j in $\rho_{\sigma}(T_{i})$ Substitution matrix (S₀); = #{rescaled copies of T_j in p₀(T_i)} = Z^T Weighted substitution matrix (W_r) = ∑^{*}vol (T) total red in white orea in white Entropy matrix (H_r) = ∑^{*}-vol (T) log(vol(T)) contribution of reds contribution of reds or entropy of inite $S_{c} = \begin{pmatrix} 8 & 5 \\ 1 & 3 \end{pmatrix}$ always true $W_{\sigma} = \begin{pmatrix} \frac{11}{25} & \frac{8}{25} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix} \begin{cases} PF \text{ eigenvalue} = 1 \\ \text{Right PF eigenvector} = 1 = (1,1)^{T} \\ \text{Left PF eigenvector} = W = (\frac{1}{4}, \frac{8}{25})^{T} \end{cases}$ $H_{G} = \begin{pmatrix} -\frac{12}{25} \log \frac{1}{25} - \frac{5}{25} \log \frac{1}{25} & -\frac{1}{25} \log \frac{1}{25} - \frac{1}{25} \log \frac{1}{25} \\ -\frac{1}{4} \log \frac{1}{4} & -\frac{3}{4} \log \frac{1}{4} \end{pmatrix}$

Explicit Counting Formulas
Consider the following matrices in
$$M_n(R)$$
 associated with s.
Here Σ^* denotes summation over all tiles T of type j in $\mathcal{P}_0(T_i)$
· Substitution matrix $(S_r)_{ij} = \#\{\text{rescaled copies of }T_j \text{ in } \mathcal{P}_0(T_i)\} = \Sigma^* 1$
· Weighted substitution matrix $(W_r)_{ij} = \Sigma^* \text{vol}(T)$ total red
· Entropy matrix $(H_r)_i = \Sigma^* - \text{vol}(T) \log(\text{vol}(T))$
· Entropy matrix $(H_r)_i = \Sigma^* - \text{vol}(T) \log(\text{vol}(T))$
· to entropy of initial
$\{\text{tiles of type r in } F_t(T)\} = \frac{[W^T(S_r - W_r)]_r}{W^T + 1}$

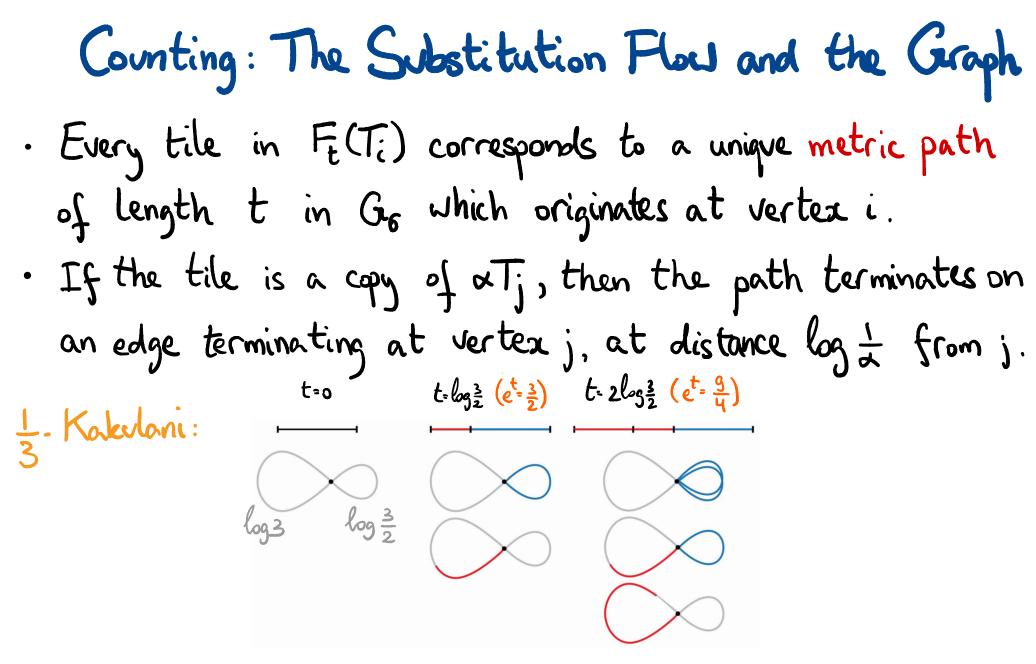
 $\operatorname{vol}(\bigcup tiles \text{ of type } r \text{ in } F_{t}(T)) = \frac{[w^{T}H_{6}]_{r}}{w^{T}H_{c}I} \operatorname{vol}(F_{t}(T)) + \operatorname{o}(\operatorname{vol}(F_{t}(T)))$

where well is a left PF eigenvector of Wo.

Distribution of Tile Scales

If in addition we define
• Density matrix
$$(D_{\sigma}(x))_{ij} = \sum_{q \neq i}^{*} g_{rd(T)}(x)$$
, $g_{r}(x) = \begin{cases} \frac{\alpha}{x^{d+1}}, \alpha < x < 1 \\ 0 \end{cases}$
{tiles in $F_{t}(T)$ of type r and scale in $[a,b]$ }
 $= \frac{d}{w^{T}H_{\sigma}1}\int_{0}^{t} (w^{T}D_{\sigma}(x))_{r}dx \cdot uol(F_{t}(T)) + o(vol(F_{t}(T)))$
Corollaries
• For any α : # {copies of αT_{r} in $F_{t}(T)$ } = $o(vol(F_{t}(T)))$.

Gop distribution for point sets defined as tile bandaries
 of 1 dimensional tilings



 Counting is translated to problems on the distribution of paths on incommensurable graphs [Kiro, Smilansky ×2, 2020]

Bounded Displacement Equivalence

- Delone sets Λ, Γ are BD equivalent if ∃ bijection
 φ: Λ→ Γ with sup || x φ(x)|| <∞ (BD map).
 A tiling is uniformly spread if ∃ Λ, obtained by picking a point from each tile, which is BD equivalent to a lattice.
- Laczkovich criterion: being uniformly spread is equivalent to sufficiently bad tile counting error terms.
- · Tilings in X, are never uniformly spread.
- Moreover, the set of BD equivalence classes represented in X₆ has cardinality of the continuum [S', Solomon].

Uniform Patch Frequencies Theorem
Tilings TeXe have uniform patch frequencies:
For any legal patch P in T and a bounded interval I
that contains a left neighborhood of 1:
$$\alpha \in I$$

 $\lim_{q \to \infty} \frac{\# \text{ appearances of } \alpha P \text{ in T inside } A_q + h}{\operatorname{vol}(A_q)} =: \operatorname{freq}(P, I, T)$
exists uniformly in heR^d, is positive and independent of TeXe
and of a choice of a van Have sequence (A_q) in R^d.
(A sequence of bounded measurable sets $\lim_{q \to \infty} \frac{\operatorname{vol}((\Omega A_q)^{+r})}{\operatorname{vol}(A_q)} = 0$)

Dynamics Theorems

- X_{σ} is invariant under translations in \mathbb{R}^{d} and under F_{t} . $F_{t}(T-x) = F_{t}(T) - e^{t}x$ for $t \ge 0$, $x \in \mathbb{R}^{d}$ (horospheric and geodesic).
- · Periodic orbits of Ft correspond to stationary tilings.
- The dynamical system (X₆, R^d) is minimal.
 Tilings T

 X₆ are almost repetitive (relative denseness of return times to E-neighborhoods of patches, for all E>0).
 Every T, T₂

 X₆ are almost locally indistinguishable
 - (same e-neighborhoods up to translations, for all e>o).
- · (X_o, R^d) is uniquely ergodic.

Steps of Proof of Unique Ergodicity · Cylinder sets are defined according to "pixelizations" A cylinder set consists of all tilings with a pizelization compatible with a fixed coloring of a large cube • The ergodic average $\frac{1}{\sqrt{4}} \int_{A_{c}} \chi_{c}(S-x-h) dx$ converges to a countable sum of counting functions of appearances of patches in Ag+h. · Denseness of scales in which patches appear allow the interpretation of the sum as a Riemann-Stieltjes integral, allowing an evaluation using the uniform partch frequencies.

Short Summary of New Tools

- -> substitution graph substitution matrix
- . discrete-time substitution and inflation
- primitivity
- · Perron-Frobenius
- · uniform patch frequency
- · summation on patches

- -> substitution flow
- -> incommensurability
- → distribution of paths on weighted graphs
- → UPF with scale intervals
- -> Riemann-Stieltjes integration

